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Abstract. The work focuses on the impact of disruptions on a rail-
way transportation network. The modeling of the transportation network
with the help of graph theory is presented and criticality /vulnerability
assessment and impact propagation in these networks is studied. Fur-
thermore, the work emulates defined mitigation measures in the modeled
network and quantifies the resilience of the network. The results are pro-
duced from an agent-based simulation tool called CaESAR (Cascading
Effects Simulation in Areas for increasing Resilience) that uses network
graphs in cooperation with their behavioral characteristics. The tool is
under integration with a broader framework (S4RIS platform) designed
under the EU H2020 project Safety4Rails aimed at integrating multiple
solutions to be made available to operators and first responders for better
responses in case of threats and disruptions.
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1 Introduction

Critical Infrastructures (CI) play a key role in the daily functioning of soci-
ety and thus are key to overall economy of a country. Furthermore, as they
grow, CI get more complex and consequently more sensitive regarding disrup-
tive events and interdependencies. Due to this criticality, CIs have been studied
for quite some time interms of risks involved and their resilience. In the project
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Safety4Rails, resilience has been defined as "the ability to repel, prepare for, take
into account, absorb, recover from and adapt ever more successfully to actual or
potential adverse events' [3] [14]. The resilience cycle as followed in the project
consists of different but overlapping and interwined phases namely, identifica-
tion, protection, detection, response and recovery [3]. Several resilience studies
in the transportation area use topological models [4]. In [1], an undirected
graph is used to model the transportation network. The resilience of every node
is computed as weighted average number of reliable independent paths with all
other city nodes in the network (betweeness centrality). The overall resilience
is then a weighted sum of all node resiliences. [2] examines the interdependent
rail networks in rush hours. The work emphasizes that topological shapes of the
network play key role in dynamics of the cascades and conclude that in complex
networks, cascade effects are more responsible for poor performance than failures
itself.

With an increase in digitization of transportation networks (similar to other
forms of ClIs), there is potential for cyber attacks that can maximize disruptions
and cause delays in recovery. One example is the jamming of CCTV monitoring
cameras to block visibility, occupancy, and other forms of on-ground informa-
tion to operators and first responders. This can lead to delays in time critical
decisions or mismanagement of resources that can prove to be bottlenecks for
trivial rescue operations. These are challenges that are assessed in this paper us-
ing the CaESAR tool. The paper is further divided into four sections. Section 2
presents the modelling technique. It briefly discusses aspects of graph theory for
criticality assessment and impact propagation. Section 3 discusses the problem
definition in the form of a use case. Section 4 presents the results and corre-
sponding visualizations. Finally, section 5 provides a summary and brief outlook
of the work.

2 Modelling of the Network

This section describes the network model built for S4R project including the
models for resilience quantification, criticality assessment, impact propagation
as well as a description of the use case. The Safety4Rails project includes four
Simulation Exercises. The networks for the Rome exercise in Safet4Rails were
generated from open source data available at OpenMobilityData [15]. This
data is based on The General Transit Feed Specification (GTFS) (GTFS Static
Overview | Static Transit | Google Developers) [16], which is a common for-
mat for public transport networks, including schedules and geographic infor-
mation. This data is used to generate a representation of the public transport
network consisting of nodes and edges. The nodes are generated according to
the stops.txt, which describes stops and their geographic locations as well as
some further information, like the location type. Since the GTFS data contain
several stops with the same name, they are consolidated to one node, where the
geo-location is the average of the geo-locations of all stops with the same name.
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Each node contains information regarding the transportation types serving it,
i.e. by which lines it is served.

Nodes are connected based on trips described in Trips.txt. A trip contains
a series of stops, where the vehicle travels along a route at a specific time.
The stops located on the corresponding trip are then connected according to
it. Added edges are unique, i.e. they represent the opportunity to travel from
one station to another one. Figure la represents the modelled network using
the open source data. This modelling consits of bus (yellow), tram(turquoise),
metro (red) and train (blue) stations. The visualizations generated in CaESAR
are interactive, and it is possible to hover over the graph nodes and get more
information including name of nodes, their degree, geo-location (as shown in
figure 1b).

(a) (b)

Fig.1: The figure shows the modelled network in the exercise. a) The Rome
testbed as modelled using open source data available at OpenMobilityData. b)
Zoomed-in version of the testbed to show the interactive dialog box and the
connections.

The modelling uses bi-directional graph to better represent the flow of traffic
throughout the network. The implementation uses multiple python modules in-
cluding Networkx([21], GeoPandas [23], Shapely [22], Bokeh [24] and NumPy [20].
The threats are modelled as objects with attributes including time of attack, list
of nodes to attack and time for repair. The nodes in-turn have attributes includ-
ing name, geo-location, capacity and repair times. The repair times are used in
the recovery strategy of the nodes after impact. The nodes are recovered after
their individual repair time has elapsed after damage.

2.1 Numerical Simulation using CaESAR

CaESAR is a python and C++ based tool that can perform offline and online
analysis of impacts on networks. Offline analysis is stochastic analysis of the net-
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work with single-point/multi-point failures to identify worst performing combi-
nations, while online analysis here is performing analysis to specific threats/fail-
ures in network in real-time, based on data from a suitable integrated platform.
CaESAR has been used to analyse cascading effects in different types of infras-
tructures such as water, electricity and mobile phone grids. In project RESISTO
[18], CaESAR has been used to model and understand telecommunication grids
[12], in SATIE [17], [19] for understanding airport networks and now is being
utilized in Safety4Rails for analysis of railway networks [3]. It uses network and
threats modelled as described above along with probabilities for failures, delays
and repair times with certain variance to quantify and analyze resilience of the
networks. In order to understand cascades in the networks, it is also capable of
employing different propagation algorithms. As a result of this analysis, CaE-
SAR delivers visualizations of propagation of impact in the network highlighting
damage and recovery, resilience curves for the network and time-series of states
of the components in the network.

2.2 Resilience quantification

Resilience of the network is considered as the quantified performance of the
system, which is the percentage of active nodes. The state of the nodes can be
considered as binary or varying between [0, 1]. For a network with N nodes, let
s; represent the state of the i*” node, then performance # at any time-step (t)
can be defined as average of all states of nodes in the network:

1 N
GZN;& (1)

While this is a basic form of performance quantification, some key performance
indicators can be derived from the resulting graphs. This includes:

1. The maximum rate of performance degradation, d(theta)/dt. An alternate
to this is the time taken to reach minimum performance.

Total downtime.

Total time for recovery.

Minimum performance.

Maximum state of recovery.

S

These indicators have been applied on the railway simulation grid and the results
have been explained in section 4

2.3 Criticality assessment

The assessment of criticality of nodes in the network is based on properties from
graph theory. These properties have also been widely used by researchers when
quantifying vulnerabilities in different applications of graph networks. An ex-
ample is the work by Artemis P. and Eusebi C. [8], wherein authors have used
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graph properties to derive connectivity and activity density of transportation
nodes over time. Another example is [10], wherein authours use the degree of
each node to measure their criticality. This work focuses on identification of crit-
ical nodes from the perspective of threats and potential disruptions and applies
these metrics (degree and betweenness centrality) to achieve it. In the integrated
platform of S4R, in the case of detection of an event, the gathered list of crit-
cal components are communicated to the operators, which helps in an informed
decision making. The two metrics "degree of nodes" and "betweeness centrality”
which are briefly explained as follows:

Degree of nodes: The degree of nodes is defined as number of connections or
edges the node has to other nodes.

Betweeness Centrality (BC): The betweeness centrality defines how much
a given node is in-between others [13]. It is measured with number of shortest
paths between any two nodes in the graph, which passes through the considered
node, for which the BC is being computed [13]. A target node will have higher
BC if it appears in many shortest paths. These nodes would correspond to central
intersections from a topological perspective [6]. These nodes would be expected
to have higher traffic than those with low BC values. With N as the total number
of nodes in the graph, the BC is often normalized by a factor of N(N — 1).
Mathematically the BC of a node vy, is defined as [6]:

Bowy = Y Tl (2)

Oviv;
ViR i3

where 0,,, is the total number of shortest paths from node v; to node v;, and
Oy, (Vk) is the number of those paths that cross vy [6]. In order to demonstrate
the effectiveness of these assessments, in addition to the use case, result section
also discusses the impact of failures in these nodes with the help of resilience
curves.

2.4 Impact propagation

To compute the resilience with respect to disruptive events, CaESAR uses im-
pact propagation to estimate the consequences on the network. In the current
study, connectivity of stations/nodes is used. Implicitly, failure in a station/track
would first reflect in the immedeately connected station and from there prop-
agate into the network. With this as a motivation, a propagation algorithm is
designed to reflect this behaviour. A custom delay is added before propagation
to next station. Since transportation network (individual or different networks
modelled as dependent) are fully connected, meaning there is no island/discon-
nected node, if run long enough the simulation will show an impact on every
node of the network. In terms of impact propagation, impact does not necessar-
ily mean physical damage. In this this context, impact can for example represents
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number of passengers reaching their destinations. Figure 3 represents the stages
of a connectivity based impact propagation in a directed graph. p; represents
the probability of propagation to the corresponding connected node. To ensure
flexibility, the delay is parameterized and represented here as m.

At time-step T', impacted node is 1, at ¢ + m, impacted nodes are 1, 2, 8 and
after t 4+ 2m time-steps, impact propagates to the next stage of connected nodes
1, 2, 8, 4, 5, 6. The recovery of nodes is independent of each other and depends
on their individual repair times. With connectivity based propagation, this needs
to be further tuned in co-ordination with ground staff and expert knowledge to
introduce limits based on the type of impact, type of compoents etc.

Pi = 100%

Fig. 2: Demonstration of connectivity based impact propagation in the network
with 100% propagation probability and m time steps between cascade to next
stages.

3 Use Case

The exercise considers a hypothetical scenario where there is a physical attack
at the Rome Termini station coordinated with a cyber attack (DoS, Denial of
Service) on the vulnerable CCTV system installed at the stations. With this
information together, a threat is designed for the simulator. The analysis is per-
formed in two phases of the resilience cycle (see Section 1), the prevention phase
and the response phase. In the prevention phase, offline analysis is performed us-
ing aspects of graph theory and what-if analysis. Vulnerable nodes are computed
based on their degree of connectivity and BC. These nodes are then plugged in
the simulator as impact soure to evaluate the impact on the overall resilience of
the network.

In the response phase, online analysis is performed, where in CaESAR depends
on the state information from other detectors in the system to simulate im-
pact. The obtained failures in the systems/components are mapped to threats
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in the network and simulated. Further analysis is performed based on the re-
silience curves and impact propagation visualizations. The scenario is based on
the open-source network generated for Rome, where there is a co-ordinated dis-
ruption of a railway station with very high degree of connectivity using a physical
attack and blocking access to key surveillance components using DOS attack.
Furthermore, the time of disruption is chosen to be inline with the rush-hour to
maximize impact. The physical attack is identified using Ganimede tool which
focuses detection of objects and people in each frame and their movement, while
the cyber attack is detected using the platform CuriX. The simulation is setup
with organized attacks at simulation time-step 5. The mitigation measures are
mentioned in table 1 and discussed further in the results section.

The tools were integrated using Kafka platform on Distributed Messaging Sys-
tem (DMS). Information is populated in DMS using different channels referred
to as topics. Tools can subscribe to these topics in forms of consumer groups
and get a constant feed of the messages being sent to the topic. The format
of the message is pre-defined. In this exercise, JSON format is used. With the
help of some specific fields like data source, event category, asset ID and event
description, the receivers can program scripts to automatically filter information
of use and post-process them for suitable analysis and visualization.

For this exercise, to present mitigation measures, four different scenarios are
considered as follows:

1. No measure: Impact propagates throughout the network.

2. Placement of security guards: Reduction in extent of impact and repair
time.

3. Design and implementation of suitable evacuation routes: Reduction
in extent of impact and repair time.

4. Re-routing of rail traffic: Reduced repair time for the impacted station
and five directly connected stations

These scenarios are parametrically summarized in the following table.

Table 1: Table of scenarios, with and without mitigation measures employed in
the exercise along with the KPIs.

Scenario |Performance Reduction of repair time ||Minimum Performance
during impact

1 0% 0% 40.98

2 50% 10% 53.74

3 75% 50% 82.21

4 0% 15% 59.04
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4 Results

In order to respect the confidentiality of the exercise, the result of the assessment
is presented using anonymized stations. In the offline analysis, five different sta-
tions from the network are selected with decreasing BC and degrees (refer 2).
The threats are designed accordingly and plugged into the simulator. The repair
time of the nodes in the network is considered to be dependent on the degree of
the node, and is defined as 20+ 5% D,,, where D,, is the degree of the correspond-
ing node. The propagation delay is considered to be 2 time steps between stages
of the graph. Here, 20 is an assumed base value. With a minimun degree of 2,
the lowest repair time of such a node in the network will be 30 time steps. As
this is a theoretical study and repair times are sensitive information, the overall
recovery has been presented in an abstract manner using time-steps. Specific
infomation from the end-users can be used to scale the overall recovery to reflect
the reality. In reference to the figure 3, here the time delay between cascades is,
m = 2. Another critical assumption used in the study is that the time taken to
recover a node is independent of the extent of impact (state of the node). The
state information is used only to quantize the resilience with respect to a threat.

Table 2: Table of nodes considered with their properties, and measured KPIs for
the system dervied from the resilience curves

Station  |Degree |BC Maximum |Time of outage/Minimum |Time to min-

gradient (timesteps) performance |imum  perfor-
mance

Station 1 |12 0.2975 [40.98 208 71.28% 63

Station 2 |10 0.2531 [53.74 218 71.869% 63

Station 3 |14 0.0190 (82.21 232 72.35% 81

Station 4 |4 0.0037 [59.04 284 76.20% 121

Station 5 |2 0.0 59.04 294 77.82% 175

Table 2 gives the criticality analysis of the network, with both the attributes
(degree and BC) and derived KPIs. As seen in figure 4a, for nodes with higher
BC, there is an early decline in the performance. As these are highly connected
nodes, impact quickly propagates in all directions of the network. Due to this,
large number of nodes are impacted very quickly and so performance rapidly
drops. For nodes with lower values of degree and BC, due to a lower connectivity,
the impact spreads to smaller number of nodes in the beginning before reaching
more dense sections of the network. This is reflected with lower gradient at the
start and higher time to maximum impact (that is minimum performance). This
gives more time to operators and first responders to organize suitable mitigation
measures to curtail the impact. The maximum value of gradient alone does not
reflect the right criticality, as it does not depend on the start of impact rather
the overall impact propagation in network. Hence, even if an impact starts in a
secluded node with low BC, when run long enough it reaches the center of the
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network. From this point, the network has same impact with cascade as it would
if the damage originated in one of the dense nodes. Another key aspect is the
time to minimum performance, for nodes with low BC, the performance impact
is low in the begining until the cascades. This promotes mitigation measures
in respect to isolations, where such sections can be removed from the overall
network to limit the damage. In terms of minimum performance, the higher the
connectivity of the nodes, the lower the minimum performance is. As impact
propagation uses connectivity, by the time the recovery in the network begins,
higher number of nodes (that is all connected nodes) are damaged as compared
to impacts originating from lower connectivity nodes.

In the online analysis, different detector tools generate events. CaESAR polls
for these messages and triggers on suitable messages. In the result, an event
of physical attack (explosion) at one of the central stations is considered and
analyzed. The repair and propagation times are as mentioned in table 1. Three
mitigation measures are considered as defined in table 1. Figure 4b presents
the resilience curves for the scenario with and without mitigation measures.
As expected, the case of no mitigation measure has the worst performance. In
absence of any mitigation measures, crowd formation is expected and disruptions
in multiple lines, as the station impacted is highly connected. Due to a high BC
value, the impacted station lies along the route to large section of stations,
disruptions are visible in multiple lines. This is represented in the form of a
cascade using connectivity. Figure 3 demonstrates this cascade for two different
selection of stations. Station 1 (left) and station 2(right) represents two stations
placed centrally and remotely. The cascade is demonstrated using with snapshots
of the state of the network at different stages (timesteps) in the simulation. The
initial stage is at ¢ = 10, and the final at ¢ = 210. The color coding in the impact
propagation gif is programmed with red representing completely failed nodes
and then a spectrum to blue representing the extent of recovery. Once the node
completely recovers, its color is overridden to green to distinguish undamaged
nodes in the network.

Employing guards on the stations can facilitate organized and faster evacuation.
This is modelled with lower recovery time, which presents as lower drop in perfor-
mance of the network when compared to no mitigation. Similarly, for rerouting
traffic, it is represented with reduction in repair times. Final consideration is
the presence of planned evacuation routes. With the help of event inspectors on
ground and co-operation with law enforcement agencies (LEA), a larger portion
of crowds can be evacuated with minimum damage. This is supposed to pro-
vide LEA and first responders with sufficient opportunity to clear the scene and
resume operations. With faster control over the system, certain sections of the
stations can still be operational, hence the state of the impacted stations is not
reduced to zero. The state can be further tweaked based on severity of impact
to better quantify the performance.
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Station 1: Timestep 10

Station 2: Timestep 10

43 A
424
414
Timestep 60 Timestep 60
Working
434
42 4
414
Timestep 110 Timestep 110
434
42 4
414
Timestep 160 Timestep 160
434
424
41 1 T T T T T T T T ImpaCted
Timestep 210 Timestep 210
434
424
414

Fig. 3: Demonstration of connectivity based impact propagation in the network
with 100% propagation probability and 2 time steps between cascade to next
stages.
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Fig.4: a) Resilience of the network with five cases of impacted stations with
decreasing BC. b) Resilience curves for original use case along with different
mitigation measures. The vertical black line (at timestep = 5) represents the
time of attack on the network.

5 Conclusion

This work has focused on modelling of transportation networks with interconnec-
tions for criticality and resilience analysis. Special focus was on implementation
of mitigation measures and rating them to understand their effectiveness. With
an increase in dependency on IoT, network components play a critical role in
both operations and recovery of the network, hence, an organized cyber-physical
attack has been considered. The analysis was performed using CaESAR in the
Safety4Rails integrated platform with detection messages being received from
other partners using DMS. Two different properties of graph theory have been
used to identify critical components in the network, which are then further uti-
lized to create threats and simulated to estimate the resilience of networks. With
the quantification of area under the curve, it can be verified that the impact is
more severe with nodes of higher degree and betweeness centrality. This finding
is also in line with other researches in this direction. In order to understand the
cascading effects of its impacts, connectivity-based propagation has been used.
It has been demonstrated that disruptions in any part of the network will have
impacts in the whole network, unless repairs are fast. The severity of the impact
of these disruptions is also dependent on the topological location of the nodes.
This finding is also in line with the criticality analysis. In terms of mitigation
measures, three different approaches have been examined, with placement of se-
curity guards to handle the crowd, planned evacuation routes and remodulation
of rail traffic. After discussions with end-users, the measures were translated to
simulation environment and it has been demonstrated that the correctly imple-
mented evacuation routes will be very effective. In the future, more cooperation
with end-users and suitable partners further mitigation measures can be studied
to generate a comprehensive survey.
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